instrukt.indexes.chroma
.ChromaWrapper
- class instrukt.indexes.chroma.ChromaWrapper(client: chromadb.Client, collection_name: str, loading: bool = True, embedding_function: Embeddings | HuggingFaceEmbeddings | HuggingFaceInstructEmbeddings | HuggingFaceBgeEmbeddings | None = None, collection_metadata: Dict[str, Any] | None = None, **kwargs)[source]
Bases:
Chroma
Wrapper around Chroma DB.
Initialize with Chroma client.
Methods
__init__
(client, collection_name[, loading, ...])Initialize with Chroma client.
aadd_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
acount
()add_documents
(documents, **kwargs)Run more documents through the embeddings and add to the vectorstore.
add_texts
(texts[, metadatas, ids])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids, where])adelete_named_collection
(collection_name)afrom_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
asimilarity_search
(query[, k])Return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Return docs most similar to embedding vector.
Return docs most similar to query.
delete
([ids])Delete by vector IDs.
Delete the collection.
from_documents
(documents[, embedding, ids, ...])Create a Chroma vectorstore from a list of documents.
from_texts
(texts[, embedding, metadatas, ...])Create a Chroma vectorstore from a raw documents.
get
([ids, where, limit, offset, ...])Gets the collection.
get_retrieval_tool
([description, ...])Get a retrieval tool for this collection.
Bypass default chroma listing method that does not rely on embeddings function.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
persist
()Persist the collection.
search
(query, search_type, **kwargs)Return docs most similar to query using specified search type.
similarity_search
(query[, k, filter])Run similarity search with Chroma.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs most similar to embedding vector and similarity score.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, filter])Run similarity search with Chroma with distance.
update_document
(document_id, document)Update a document in the collection.
Attributes
Return the collection's description if it exists.
Access the query embedding object if available.
Returns the collection metadata.
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str]
Run more documents through the embeddings and add to the vectorstore.
- Parameters:
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns:
List of IDs of the added texts.
- Return type:
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: List[dict] | None = None, **kwargs: Any) List[str]
Run more texts through the embeddings and add to the vectorstore.
- add_documents(documents: List[Document], **kwargs: Any) List[str]
Run more documents through the embeddings and add to the vectorstore.
- Parameters:
(List[Document] (documents) – Documents to add to the vectorstore.
- Returns:
List of IDs of the added texts.
- Return type:
List[str]
- add_texts(texts: Iterable[str], metadatas: List[dict] | None = None, ids: List[str] | None = None, **kwargs: Any) List[str]
Run more texts through the embeddings and add to the vectorstore.
- Parameters:
texts (Iterable[str]) – Texts to add to the vectorstore.
metadatas (Optional[List[dict]], optional) – Optional list of metadatas.
ids (Optional[List[str]], optional) – Optional list of IDs.
- Returns:
List of IDs of the added texts.
- Return type:
List[str]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST
Return VectorStore initialized from documents and embeddings.
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: List[dict] | None = None, **kwargs: Any) VST
Return VectorStore initialized from texts and embeddings.
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]
Return docs selected using the maximal marginal relevance.
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]
Return docs selected using the maximal marginal relevance.
- as_retriever(**kwargs: Any) VectorStoreRetriever
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters:
search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
search_kwargs (Optional[Dict]) –
Keyword arguments to pass to the search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
- Returns:
Retriever class for VectorStore.
- Return type:
VectorStoreRetriever
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document]
Return docs most similar to query using specified search type.
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document]
Return docs most similar to query.
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]
Return docs most similar to embedding vector.
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]
Return docs most similar to query.
- delete(ids: List[str] | None = None, **kwargs: Any) None
Delete by vector IDs.
- Parameters:
ids – List of ids to delete.
- delete_collection() None
Delete the collection.
- classmethod from_documents(documents: List[Document], embedding: Embeddings | None = None, ids: List[str] | None = None, collection_name: str = 'langchain', persist_directory: str | None = None, client_settings: chromadb.config.Settings | None = None, client: chromadb.Client | None = None, collection_metadata: Dict | None = None, **kwargs: Any) Chroma
Create a Chroma vectorstore from a list of documents.
If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory.
- Parameters:
collection_name (str) – Name of the collection to create.
persist_directory (Optional[str]) – Directory to persist the collection.
ids (Optional[List[str]]) – List of document IDs. Defaults to None.
documents (List[Document]) – List of documents to add to the vectorstore.
embedding (Optional[Embeddings]) – Embedding function. Defaults to None.
client_settings (Optional[chromadb.config.Settings]) – Chroma client settings
collection_metadata (Optional[Dict]) – Collection configurations. Defaults to None.
- Returns:
Chroma vectorstore.
- Return type:
Chroma
- classmethod from_texts(texts: List[str], embedding: Embeddings | None = None, metadatas: List[dict] | None = None, ids: List[str] | None = None, collection_name: str = 'langchain', persist_directory: str | None = None, client_settings: chromadb.config.Settings | None = None, client: chromadb.Client | None = None, collection_metadata: Dict | None = None, **kwargs: Any) Chroma
Create a Chroma vectorstore from a raw documents.
If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory.
- Parameters:
texts (List[str]) – List of texts to add to the collection.
collection_name (str) – Name of the collection to create.
persist_directory (Optional[str]) – Directory to persist the collection.
embedding (Optional[Embeddings]) – Embedding function. Defaults to None.
metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None.
ids (Optional[List[str]]) – List of document IDs. Defaults to None.
client_settings (Optional[chromadb.config.Settings]) – Chroma client settings
collection_metadata (Optional[Dict]) – Collection configurations. Defaults to None.
- Returns:
Chroma vectorstore.
- Return type:
Chroma
- get(ids: OneOrMany[ID] | None = None, where: Where | None = None, limit: int | None = None, offset: int | None = None, where_document: WhereDocument | None = None, include: List[str] | None = None) Dict[str, Any]
Gets the collection.
- Parameters:
ids – The ids of the embeddings to get. Optional.
where – A Where type dict used to filter results by. E.g. {“color” : “red”, “price”: 4.20}. Optional.
limit – The number of documents to return. Optional.
offset – The offset to start returning results from. Useful for paging results with limit. Optional.
where_document – A WhereDocument type dict used to filter by the documents. E.g. {$contains: {“text”: “hello”}}. Optional.
include – A list of what to include in the results. Can contain “embeddings”, “metadatas”, “documents”. Ids are always included. Defaults to [“metadatas”, “documents”]. Optional.
- get_retrieval_tool(description: str | None = None, return_direct: bool = False, with_sources: bool = False, with_citation: bool = False, **kwargs) SomeTool [source]
Get a retrieval tool for this collection.
- list_collections() Sequence[Collection] [source]
Bypass default chroma listing method that does not rely on embeddings function.
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Dict[str, str] | None = None, **kwargs: Any) List[Document]
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters:
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns:
List of Documents selected by maximal marginal relevance.
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Dict[str, str] | None = None, **kwargs: Any) List[Document]
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters:
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns:
List of Documents selected by maximal marginal relevance.
- persist() None
Persist the collection.
This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed.
- search(query: str, search_type: str, **kwargs: Any) List[Document]
Return docs most similar to query using specified search type.
- similarity_search(query: str, k: int = 4, filter: Dict[str, str] | None = None, **kwargs: Any) List[Document]
Run similarity search with Chroma.
- Parameters:
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns:
List of documents most similar to the query text.
- Return type:
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Dict[str, str] | None = None, **kwargs: Any) List[Document]
Return docs most similar to embedding vector. :param embedding: Embedding to look up documents similar to. :type embedding: List[float] :param k: Number of Documents to return. Defaults to 4. :type k: int :param filter: Filter by metadata. Defaults to None. :type filter: Optional[Dict[str, str]]
- Returns:
List of Documents most similar to the query vector.
- similarity_search_by_vector_with_relevance_scores(embedding: List[float], k: int = 4, filter: Dict[str, str] | None = None, **kwargs: Any) List[Tuple[Document, float]]
Return docs most similar to embedding vector and similarity score.
- Parameters:
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns:
List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity.
- Return type:
List[Tuple[Document, float]]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters:
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns:
List of Tuples of (doc, similarity_score)
- similarity_search_with_score(query: str, k: int = 4, filter: Dict[str, str] | None = None, **kwargs: Any) List[Tuple[Document, float]]
Run similarity search with Chroma with distance.
- Parameters:
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns:
List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity.
- Return type:
List[Tuple[Document, float]]
- update_document(document_id: str, document: Document) None
Update a document in the collection.
- Parameters:
document_id (str) – ID of the document to update.
document (Document) – Document to update.
- property count: int
- property description: str | None
Return the collection’s description if it exists.
- property embeddings: Embeddings | None
Access the query embedding object if available.
- property metadata: dict[Any, Any] | None
Returns the collection metadata.
- property name: str